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Abstract. We present a detailed theoretical study of the melting curve of iron from normal 
conditions up to pressures of 1.5 Mbar, i.e. up to pressures characteristic for the boundary 
between the Earth’s mantle and its core. The analysis is based on simple effective inter- 
atomic pair interactions derived from a combined nearly free-electron treatment of the s 
electrons and a tight-binding treatment of the d electrons. The free energies of the solid and 
liquid phase are calculated using thermodynamic variational methods. For the solid we use 
an Einstein reference system. For the liquid both hard-sphere and soft-sphere variational 
systems are investigated. The soft-sphere reference system produces a lower (and hence 
more accurate) liquid free energy. This is necessary to achieve a quantitative description of 
the melting properties. In particular, the predicted increase of the melting tcmperature with 
pressure is in reasonable agreement with recent measurements reported by Q Williams and 
co-workers. 

1. Introduction 

Iron is considered to be the dominant constituent of the Earth’s core; thus the variation 
of the melting temperature of iron with very high pressures is of considerable theoretical 
and experimental interest [ 1-31. 

The calculation of the melting curve of a metal from first principles remains a 
challenging problem-the latent heat of fusion being only a very small fraction of the 
cohesive energy [4]. For simple metals, the foundations of a quantitative theory of 
melting were laid some time ago by Ashcroft and Stroud [5] and Jones [6]. The basic 
ingredients of the approach are pseudopotential perturbation theory for the construction 
of effective inter-atomic pair interactions, and various thermodynamic perturbation 
theories for calculating the free energies of the solid and liquid phases. On this basis a 
reasonably quantitative description of the melting properties has been achieved for the 
alkali metals [5-81, for A1 [9, 101, Sr [11] and Pb [12]. Other attempts to study the 
solid/liquid transition in s-p-bonded metals or semiconductors are based on either 
molecular dynamics [ 13-15] or density functional theory [ 161. 

For the more interesting case of the transition metals progress has been rather slow. 
This is mainly due to the lack of reliable inter-atomic potentials. Recently Wills and 
Harrison [17] have extended the nearly free-electron theory of simple metals to include 
the effects of the transition-metal d bands. This is achieved by using a simplified tight- 
binding description and a momentum decomposition of the d-electron density of states 
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and results in a bonding pair interaction proportional to the width of the d band and a 
repulsive interaction arising from the shift of the centre of gravity of the d band. These 
pair interactions add to the simple-metal-like pair potential mediated by the s electrons, 
the total pair potential being much stronger than in simple metals. Using a slightly 
modified form of the Wills-Harrison potentials and a thermodynamic variational tech- 
nique with a soft-sphere reference medium we have recently succeeded in describing the 
structure and the thermodynamic properties of the liquid 3d and 4d transition metals 
with reasonable accuracy [ 181. 

In the present paper we combine the variational description of the liquid free energy 
with a variational calculation of the free energy of the solid based on an Einstein 
reference system. In 0 2 we summarise the elements of the simplified approach to the 
cohesive and structural properties of transition metals. In 9 3 we review the statistical 
mechanical calculation of the free energies. Then in § 4 we present and discuss the results 
for the melting of iron. 

2. Effective pair interactions for transition metals 

Following Wills and Harrison [17] the nearly free-electron theory for simple metals is 
extended to include the effect of the transition-metal d bands by using the Friedel model 
of the d-electron density of states and an atomic sphere approximation for the d-d 
transfer and overlap integrals. This produces a bonding term proportional to the d-band 
width and a repulsive term arising from the shift of the centre of gravity of the d 
band. The effect of the s-d hybridisation is included through a variation of the relative 
occupancies of the s and d bands. By writing the bond energies in terms of the moments 
of the d-d interactions, we may express them in terms of effective pair interactions. 
Altogether the total energy is composed of a volume term E,(Q),  and a sum over 
density-dependent pair interactions. The pair potential consists of an s-electron con- 
tribution V,(r) and a d-electron contribution Vd(r), 

V(r)  = V,(r) + Vd(r). (1) 
The s-electron contribution is given in terms of the electron-ion pseudopotential (we 
assume an empty-core model with a core radius R,) and the dielectric response functions 
x(q)  and ~ ( q )  are given by the familiar expressions ([4], pp 69ff) 

v, = 22; (1 + 16 lo- (X(4) /&(4))  cos2(qRc) sin(qr)lq3 Q)/r (2) 

where 2, is the number of s electrons (we use 2, = 1.5 for all transition metals, in 
accordance with [17] and the result of self-consistent band-structure calculations-see, 
e.g., [19]). The d-electron contri.butions are given by [17, 181 

Vd = - [zd(10 - 2d)/10(28.06/n)]2R~/r5 + Zd(450/n2)R2/rs ( 3 )  
where Z d  is the number of d electrons and Rd is the d-state radius. Z d  is fixed by setting 
Z, = 1.5. For Rd we use the d-state radii determined by Harrison and Froyen [20] by 
fitting the width of the canonical bands calculated in the atomic sphere approximation. 

This leaves us with the empty-core radius as the single free parameter in the theory. 
We determined R, by fitting the density of crystalline iron at room temperature. This 
yields R, = 1.703 au (in [18] we used a somewhat different core radius derived from a 
simplified equilibrium condition). 
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Figure 1. The variation of the inter-atomic poten- 
tial of iron under compression, displaying the 
simple-metal part and the d-electron part of the 
interaction. V (au) = (a )  62.502, ( b )  89.289, (c)  
125.005. 
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Figure 1 shows the effective inter-atomic potentials as functions of volume. Only the 
s-electron contribution varies with the electron density. The d-electron part behaves 
like a classical pair potential. The net effect on the inter-atomic interaction is to shift the 
minimum to smaller distances under compression. 

3. Statistical mechanics 

According to the Gibbs-Bogoliubov inequality [21] an upper bound to the exact free 
energy is given by 

where U. is the kinetic energy of the ions in the reference system, Efe is the free-electron 
F G  U0 + Efe + ( E e s ) ~  + ( E b s ) ~  + ( E ~ ) o  - T(SO + Se,) (4) 
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energy, the third to fifth terms are the electrostatic, band-structure (s-electron), and d- 
electron energies, averaged over the ionic coordinates, and So and Sel are the reference 
system entropy and the electronic entropy, respectively. For the electronic contribution 
to the entropy we use, in accordance with our electronic structure model, 

se, = yZ,T + (n*/3)k;nd(EF)T ( 5 )  
where y is the Sommerfeld constant of the electronic specific heat and the d-electron 
density of states nd(E)  is calculated from the Friedel model. 

3.1. Solid phase 

For the solid phases we have chosen for simplicity an Einstein model as a reference 
system. The kinetic energy and the entropy term are given by [4,22] 

uo - TS,, = 3k,8E[i coth(x/2) + (exp(x) - I)-' - In(1- exp( - x ) ) / x ]  (6) 

with x = OE/T where OE is the Einstein temperature. The structure-dependent terms in 
(4) are given by the usual expressions, with each phase factor exp( -iq - R I )  entering the 
structure factor replaced by its thermal expectation value evaluated in the Einstein 
reference system: 

(exp(iq.Rl)>o = exP(iq*Rlo) exP(-q2P). (7)  

The mean square amplitudes of vibration are given by 

p = COth(8~/2T)/4Mk, 8 E .  

The upper bound to the free energy is obtained by minimising the right-hand side of (4) 
with respect to OE. Note that the variational approach is, within the bounds of the 
reference system, equivalent to a self-consistent phonon approximation, i.e. even-order 
anharmonicities are included to all orders. 

3.2. Liquidphase 

For the liquid phase we have shown that a hard-sphere Yukawa (HSY) fluid is a very 
appropriate reference system for materials with hard- or soft-core interactions. Ana- 
lytical solutions for the structure factor are available in the mean-spherical approxi- 
mation [4, 18,231. The variational upper bound to the liquid free energy is given by an 
expression analogous to (4). It has to be minimised with respect to three parameters: 
the diameter cr of the hard core (or equivalently the hard-sphere packing fraction q = 
nna3/6Q2, where Qa is the atomic volume), the strength E of the Yukawa potential at hard 
contact, and the inverse screening length K (for details, see [4, 181). Note that for all 
liquid transition metals the HSY reference fluid yields a lower variational free energy 
than a simple hard-sphere reference liquid [18]. 

4. Melting curve 

The melting curve is established by the common-tangent construction on the free energy 
versus volume curves of the solid and liquid phases at a fixed temperature T = T,. This 
yields directly the melting pressure pm( T,). 
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In the case of iron the calculation of the melting curve is complicated by two facts. 
(i) iron undergoes a polymorphic transition from the FCC y-phase to the BCC &phase at 
a temperature TY6 = 1665 K not too far below the melting temperature T, = 1809 K [ 2 ] .  
The y-6 transition curve intersects the melting curve of &iron at a y - & ~  triple point 
close to p = 50 kbar and T = 2000 K. At pressure above 50 kbar the melting of the y- 
phase is observed. (ii) The low-temperature polymorphic transitions from the BCC 
a-phase to the y-phase (Tq = 1184 K) and the pressure-induced transition from the 
ferromagnetic a-iron to the non-magnetic HCP &-phase (p = 170 kbar) are dominated by 
magnetic effects. The polymorphic transitions have been discussed frequently in the 
literature [2&26]. The ferromagnetic energy contribution stabilises the BCC phase with 
respect to the close-packed structures at T = 0 K. At higher temperatures the a-phase 
is destabilised by the rapid increase of the magnetic entropy as the ferromagnetically 
aligned moments become disordered. It has been shown that disordered local moments 
can be sustained within a band framework above the Curie tempeature Tc and also in the 
paramagnetic and non-magnetic phases [25-261. The root mean square local magnetic 
moments increase strongly upon volume expansion. At temperatures above Tc they are 
nearly the same in all three crystalline phases. Thus it appears to be legitimate to assume 
that the liquid phase shows the same degree of spin disorder as the crystalline phases. 
This would explain why the entropy of melting of &iron (S = 0.92 k,) comes very close 
to the normal value for all BCC metals (S = (0.91 ? 0.17) kB) [24,27]. As the liquid has 
a large atomic volume, it would also be in line with the increase of the magnetic moments 
under expansion. 

Hence the assumption that the melting of iron is not influenced by the magnetic 
effects seems to be an acceptable working hypothesis. On the other hand we cannot 
ignore the fact that close to the melting line we have a competition between two 
crystallographicphases. This means that we have to calculate the crystalline free energies 
for both the BCC &phase and the FCC y-phase and determine their melting curves via 
two independent sets of common-tangent constructions. The intersection of the two 
melting curves defines the y - 6 - ~  triple point. 

Figure 2 shows the free energy versus volume curves at different temperatures. In 
(a)  we compare the BCC phase and the liquid (treated in the HSY reference system). In 
(b )  we compare the FCC phase and the liquid. A compilation of calculated zero-pressure 
thermodynamic data for the solid and liquid phases is given in table 1 and compared 
with experimental data. We find a reasonable agreement for the calculated densities and 
entropies, albeit with a general trend towards underestimation of the entropy in the 
solid as well as in the liquid phases. The result for the solid phases is remarkable in that 
we find only a minimal difference in the effective Einstein temperatures 0, and hence 
in the vibrational free energies of the two competing phases. Thus the 7-6 transition is 
not associated with vibrational effects. On the other hand we find that the d-electron 
contribution to the structural energy difference varies strongly with the volume, the 
close-packed phase being stabilised under compression. For the liquid phase we confirm 
our previous result [18] that the HSY result gives a significantly lower variational upper 
bound to the free energy than does the HS system. 

The melting curve is determined by the common-tangent construction. As the free 
energy of the liquid phases increases more rapidly under compression we expect an 
increase of the melting temperature under compression. The calculated melting proper- 
ties for y- and &iron are summarised in table 2. Figure 3 shows a comparison of 
the calculated melting curves for pressures up to 3 Mbar, compared with the recent 
experimental results of Williams and co-workers [ 11 from laser-pulse melting experi- 
ments in a diamond-anvil cell. 
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Figure 2. Free-energy curves of the BCC ( a )  and FCC ( b )  phases compared with those of the 
melt. 

Table 1. Calculated thermodynamic properties of iron in the solid and liquid phases: atomic 
volume Qm, entropy S ,  and variationally determined parameters of the Einstein and HSY 
reference systems (eE, q ,  E ,  K-see the text). 

Q, (A') SlkB 

T(K)  B,(K) Calc.  EX^.^ Calc.  EX^.^ 

y-iron 1473 345 12.31 12.26 8.52 10.05 
1673 341 12.46 9.11 
1873 337 12.65 9.68 

&iron 1473 346 12.39 8.52 
1673 342 12.55 12.35 9.12 10.65 
1873 337 12.75 9.70 

Qrn (A3) SlkB 

T(K) 17 E (mRyd) ~ ( a u - ' )  Calc. Exp.' Calc.  EX^.^ 

Liquidiron 2223 0.431 183 0.90 13.42 13.84 11.80 13.14 
2423 0.415 176 0.93 13.68 14.27 12.48 13.62 
2623 0.402 172 0.94 13.99 14.63 13.12 14.06 

a After [28]. 
From [29]. 
After [30]. 

Our calculated melting curves show reasonable agreement with experiment. The 
melting temperature increases quite strongly under pressure. This increase is more 
pronounced for the FCC than for the BCC phase, the two curves intersect at a y - 6 - ~  triple 
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Table 2. Calculated melting properties of y- and 6-iron: melting temperature T,, melting 
pressurep,, fractional volume change on melting A Q ,  entropy of fusion S, and Lindemann 
ratio L. 

T,(K) pm(kbar) A Q ( % )  S/k ,  L 

y-iron (FCC) 2640 0 
3023 263 1.4 1.28 0.068 
3423 671 1.8 1.17 0.065 
3823 1019 2.2 1.12 0.067 
4223 1581 2.4 2.10 0.069 

Exp . a 2000 50 

6-iron (BCC) 2680 0 
3023 225 0.9 1.30 0.077 
3423 1079 0.7 0.94 0.073 
3823 1813 0.8 0.58 0.074 
4223 2361 1.2 1.49 0.075 

 EX^.^ 1809 0 6.2' 0.92d 
1.03e 

a y-6-~ triple point. 
Zero-pressure melting of 6-iron. 
After [28]. 
After [29]. 

e After [31]. 

~, 

400 t 4000 

- 
Y 
h 

2000 

0 1 2 
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Figure3. Melting curves Of BCC and FCC iron, calculated using the HSY and Einstein reference 
systems. The crosses give the calculated points, the short bars the slopes of the melting curves 
calculated fromthe Clausius-Clapeyron relation dT,/dp, = AQ/AS. The broken (FCC) and 
chain (BCC) curves are tentative interpolations of the melting curves. The open and full arrow 
heads show upper and lower estimates to the melting point inferred from the laser-pulse 
experiments of Williams and co-workers [l]. The full curve is a tentative interpolation of the 
experimental results. The region around the triple point is shown enlarged in the inset. 
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point at a pressure of about 200 kbar. The stabilisation of the FCC phase under pressure 
stems from a lower d-electron energy, the entropy contributions being nearly the same 
for the two crystalline phases. 

Within the HSY reference system for the liquid the largest independent error is a 40% 
overestimate of the melting temperature, compared with a 13% accuracy achieved in 
similar calculation for the simple metal A1 [lo]. The calculated melting temperature 
depends quite critically on the reference system. If the HSY reference system for the 
liquid metal is replaced by a HS reference system, then the calculated melting temperature 
would be even higher, by -400 K. However, if the HSY reference system describes the 
softness of the transition-metal pair interactions quite well, it does not account for the 
effect of the attractive interactions on the liquid structure. These attractive interactions 
are much stronger for transition metals than for simple metals. This explains the rela- 
tively modest result for the calculated melting temperature of iron. On the other hand 
this is also why atempts to apply more sophisticated perturbation methods such as the 
optimised random-phase approximation to liquid transition metals have up to now been 
unsuccessful. 

Other properties, such as the fractional volume change on melting and the entropy 
of fusion, are much less sensitive to the choice of reference system and we find a quite 
reasonable agreement with experiment. 

It is well known that the solid/liquid transition obeys two empirical rules: the 
Lindemann rule on the solid side, and the Verlet rule on the liquid side of the melting 
curve. According to the former the Lindemann ratio L (the root mean square dis- 
placement divided by the nearest-neighbour distance) should be constant along the 
melting curve [32]. In our calculation we find that L remains very nearly constant over 
a very wide range of pressures (table 2). Verlet’s rule [33,34] predicts that a melt freezes 
when the height of the first peak of the static structure factor reaches a value of S( Qp) = 
2.8 and that the structure factor as a function of the momentum transfer scaled to Qp 
should vary very little along the melting line. Again we find that liquid iron obeys this 
rule up to very high pressures (see figure 4). 

5. Conclusions 

We have presented the first calculation of the melting curve of a transition metal starting 
from an electronic theory of the interaction forces. For the difficult case of iron we find 
encouraging results. The calculations correctly predict a Y-&L triple point, an increase 
of the melting temperature under pressure in reasonable agreement with recent experi- 
ments, and quite acceptable values for the volume and entropy changes on melting. The 
largest error occurs for the low-pressure melting temperature. 

Altogether it is certainly surprising that even semi-quantitative agreement with 
experiment can be achieved with such an extremely simplified form of the inter-atomic 
interaction and such a simple reference system, allowing questions of metallurgical and 
even geophysical significance to be addressed with methods that are essentially rigorous 
and developed from first principles. Future work will bear on improved inter-atomic 
potentials, on anharmonic corrections to the vibrational free energy of the crystal and 
on a better description of the structure and the thermodynamics of the melt. 



The melting curve of iron 5251 

T IKJ p (kbar i  

3023 2 6 3  

3423 671 _ _ _ _ _  

3823 1019 

I I I I I I I I I I I I I I I I  I l l  I I 1 1  I I I 
0 10 20 

q o  
Figure 4. The variation of the static structure factor of liquid iron along the melting curve, 
plotted as a function of the scaled momentum transfer qu ( U  is the variationally determined 
HSY diameter). 
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